
Sai Nikhil Thirandas

Data Modeling Project

MATH 7241 - Probability I

Supervisor: Prof. Christopher King

2020

1 Description of Data

I downloaded a compilation of historical baseball data from Kaggle - Baseball
Databank [Kag20]. The data is contributed by Sean Lahman [Lah16]. It
contains batting statistics such as playerID, year, stint (order of appearance),
teamID, Runs Scored by Player in Match, etc., at the international league level.
There are in total 101333 rows, each corresponding to a unique combination
of player and year between years 1871 and 2015 (boundaries included). For
example we can have data of 200 players with corresponding stints in 1871 and
180 players with corresponding stints in 1872 etc., There can be some overlap
in players year to year or may not. Because a player can retire after a certain
age limit is reached.

2 Cleaning of Data

I picked only those rows for the first stint (opening batsman) and took an
average of runs scored by all the players appearing at stint 1 in each year. So
my new data will look something like a combination of years and runs, where
years will correspond to index of time series and runs are average of all opening
players (stint = 1). This can be achieved using a pivot table indexed on year
and using the aggregate function as average, applied of runs for which stint =
1. Although the data will just consist of only 145 rows (with rows one each for
years from 1871 to 2015) it is formed from a data of 93898 rows (not 101333
because I choose only stint = 1. It is expected to have many entries for stint
= 1 because every match is definitely supposed to have opening batsmen). So,
on average we are having 93898

145 ≈ 647 opening appearances every year which is
directly proportional to the number of matches. The reason for choosing the
data in the format year vs average of runs is because each year we can have
different number of matches played. For example, here in the year 1871, 115
matches were played, in year 1872, 143 matches were played, in year 2012, 1284
matches were played etc., One can clearly observe there is a stark contrast in
the number of matches taking place each year. Hence, it is necessary to use
some statistical analysis and choose the right central tendency measurement
in order to compare data between years. In this case, my personal interest is
to compare the average of runs scored by all opening stint players across all
the years. So, the time series plot of years vs average runs of opening batsman
would look like the below graph:

1

3 Data Analysis & Modeling

From the above graph, I observed that there are several outliers. For example,
During 1890 - 1900, the average runs scored by opening batsman is very high.
I first tried diving the range of average runs into equal intervals and found that
my modelling is behaving poorly for all the states. I realized that is not a fair
assumption to divide the intervals of the range of average runs into equal lengths.
Hence, upon having a close look at the data I found that diving the values such
that each state follows the following distribution is a fair assumption.

quantiles = [0.03, 0.24, 0.52, 0.69, 0.83, 0.935, 0.97, 0.99, 1.0]

The total number of states in the Markov Chain are 9. This produces a
left skewed curve with median lying at the third state. This looks like a fair
assumption because if we closely observe the average run values it is less in
the recent days. So the time series frequency plot of Markov State vs the
Normalized Frequency should be designed in such a way that median values
are closer to least numbered Markov State as it would allow less number of
intervals (hence more gap occupied) below the median thus allowing the future
value to choose a Markov State of smaller number with higher probability than
a Markov State of larger number. According to the above theory, the Markov
State vs Normalized Frequency Plot would look like the below graph:

2

3.1 Empirical Distribution

The empirical distribution of time series is a plot of time vs Markov State,
which would look like the below graph:

3.2 Transition Matrix

I wrote a function in order to compute the transition matrix for the time series
which follows the above distribution. The transition matrix looks like following:

0.250 0.250 0.250 0.000 0.250 0.000 0.000 0.000 0.000
0.100 0.467 0.400 0.033 0.000 0.000 0.000 0.000 0.000
0.000 0.375 0.400 0.150 0.075 0.000 0.000 0.000 0.000
0.040 0.000 0.320 0.320 0.240 0.080 0.000 0.000 0.000
0.000 0.000 0.100 0.400 0.300 0.200 0.000 0.000 0.000
0.000 0.000 0.067 0.067 0.200 0.333 0.200 0.133 0.000
0.000 0.000 0.000 0.000 0.200 0.600 0.000 0.000 0.200

3

0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.333 0.333
0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.000 0.000

3.3 Stationary Distribution

I wrote a function to compute the limiting probability vector (stationary vector)
for the empirical distribution. The stationary vector looks like the following:

W = [0.037, 0.214, 0.279, 0.163, 0.138, 0.101, 0.034, 0.020, 0.014]

As a side note, the above vector is an approximate answer. Because, the
system is inconsistent after adding an additional condition, which is sum of
wi = 1. It is computed using least squares approximation numerical computation
technique.

The Markov State vs stationary vector plot would look like the following
graph:

This plot is clearly similar to the Markov State vs Normalized Frequency
for original time series which is a indication that I didn’t disturb the frequency
distribution of the original data.

3.4 Simulated Time Series Generation

I generated a new time series from the stationary vector in the following way. I
choose a random seed from state = 0 to state = 8 (my highest Markov state
id, because total states = 9 and initial state id = 0). I generate my next state
by following a probability distribution as obtained from the transition matrix
computed above. For example, if my first random state is, state = 2, then I
go to third row in the transition matrix, pick the probability vector (elements
in that row) and generate my second state based on this probability vector.
If I get my second state as, state = 4, then I go to fourth row in transition
matrix, pick the probability vector and generate my third state based on this
probability vector and so on ... till I get 145 observations. This is my new
time series. As a comparison, the original time series is compared with this
simulated time series as a plot and it looks like the following graph:

4

3.5 Auto-Correlation Comparison

Applying the auto correlation formula, the correlation values for original time
series and simulated time series are given in the following table:

5

Auto correlation values (R)

k For Original Time
Series

For Simulated Time
Series

0 1.01899782 1.02371143

1 0.7960541 0.67928436

2 0.74913512 0.47582175

3 0.73698871 0.35648656

4 0.67902765 0.21534056

5 0.65139905 0.13500697

6 0.60837141 0.11537835

7 0.58751107 0.0911297

8 0.52760434 -0.03744554

9 0.46964328 -0.11079537

The observation is that values of Zeroth and First auto correlation values
of original time series vs simulated time series are very close. The percentage
of difference increases as we go down the table. This is in general not a good
sign and can lead to a conclusion that our original time series is not a Markov
Chain. Further analysis is needed which is done below.

3.6 Goodness of Fit Test

A Goodness of Fit Test for two step transition of original time series is conducted
in order to see if our original time series obeys Markov Principle (current state
is dependent only on previous state and not anything before that). The Pearson
Test Statistic values are computed for each state and this value is compared with
chi-squared probability density function with corresponding degrees of freedom
obtained from empirical distribution with two step transition where the entry
is greater than zero in theoretical distribution and 5 percent significance level,
using the function compute_test_statistic. This comparison yielded following
results:

6

Comparison of Chi-square with Test Statistic for each state

State Chi Square
Value

Test Statistic Decision

0 7.814727903251179 28.5 Rejecting

1 7.814727903251179 157.7253401360544 Rejecting

2 7.814727903251179 70.21227564102563 Rejecting

3 9.487729036781154 141.50464629629627 Rejecting

4 7.814727903251179 148.60524691358023 Rejecting

5 11.070497693516351 104.23495726495725 Rejecting

6 5.991464547107979 3.6533333333333333 Accepting

7 5.991464547107979 14.666666666666664 Rejecting

8 3.841458820694124 2.5 Accepting

4 Conclusions

This comparison shows that GoF test rejected the states 0, 1, 2, 3, 4, 5, 7 and
accepted states 6, 8. This is another confirmation (apart from auto-correlation
test) that this time series does not obey the Markov Rule (current state is
dependent only on previous state and not anything before that).

So our initial assumption that the average of runs scored by opening batsman
is just dependent on the average of runs scored by opening batsman only
in previous year is wrong. It could be true because in practice this is a
multidimensional problem which can depend on several features and we tried
to simplify the model with an assumption that it follows Markov Rule (current
state is dependent only on previous state and not anything before that). In
fact, batsman change every year and number of matches played differ every
year and if in a year the strong team plays more number of matches, the
average runs scored by opening batsman could be more and if weaker teams
play more number of matches in a certain year, the average runs scored by
opening batsman could be less etc., However, this analysis is still very useful
because if it works out well, our model is greatly simplified and if it doesn’t

7

work well then we can conclude to not use Markov Modeling for this problem
statement in the future.

5 Appendix

5.1 Function to compute transition matrix

def compute_transition_matrix_fast(data, n, step = 1):
t = np.array(data)
step = step
total_inds = t.size - (step + 1) + 1
t_strided = np.lib.stride_tricks.as_strided(

t,
shape = (total_inds, 2),
strides = (t.strides[0], step * t.strides[0]))

inds, counts = np.unique(t_strided, axis = 0, return_counts = True)

P = np.zeros((n, n))
N = np.zeros((n, n))
P[inds[:, 0], inds[:, 1]] = counts
N[inds[:, 0], inds[:, 1]] = counts

sums = P.sum(axis = 1)

P[sums != 0] = P[sums != 0] / sums[sums != 0][:, None]

return P, N

5.2 Function to compute Stationary Vector

def compute_stationary_distribution(P):
A = np.vstack((P.T - np.identity(P.shape[0]), np.ones((P.shape[0]))))
print(A.shape)
b = np.zeros((P.shape[0] + 1, 1))
print(b.shape)
print(b)
b[-1] = 1
print(b)
display(sp.Matrix(A))
return np.linalg.lstsq(A, b)[0]

5.3 Function to compute Auto Correlation

def compute_auto_correlation(x, k):
x_bar = np.average(x)
num, den = 0, 0
m, M = x.index.min(), x.index.max()

8

for i in range(m, M - k + 1):
num += ((x[i] - x_bar) * (x[i + k] - x_bar))

for i in range(m, M):
den += (x[i] - x_bar)**2

return num / den

5.4 Function to compute test statistic and chi square value for
each state

def compute_test_statistic(N, Q, i):
n, N2 = N.shape[0], N[i][Q[i] > 0]
S = N2.sum()
chi2 = sc.stats.chi2.ppf(q = 0.95, df = len(N2) - 1)
ts = 0.0
print(n, S)
if S > 0:

for j in range(n):
if Q[i][j] > 0:

observed = N[i][j]
expected = S * Q[i][j]
ts += ((observed - expected)**2 / expected)

return chi2, ts

References

[Kag20] Kaggle. Baseball Databank. 2020. url: https://www.kaggle.com/open-
source-sports/baseball-databank?select=Batting.csv.

[Lah16] Lahman, S. Baseball Database. 2016. url: http://www.seanlahman.
com/baseball-archive/statistics/.

9

https://www.kaggle.com/open-source-sports/baseball-databank?select=Batting.csv
https://www.kaggle.com/open-source-sports/baseball-databank?select=Batting.csv
http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/

	Description of Data
	Cleaning of Data
	Data Analysis & Modeling
	Empirical Distribution
	Transition Matrix
	Stationary Distribution
	Simulated Time Series Generation
	Auto-Correlation Comparison
	Goodness of Fit Test

	Conclusions
	Appendix
	Function to compute transition matrix
	Function to compute Stationary Vector
	Function to compute Auto Correlation
	Function to compute test statistic and chi square value for each state

	References

