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1 Introduction

There are several types of predator-prey inter-
actions and some researchers have conducted
extensive research on the dynamics of inter-
acting predator-prey models to understand the
long-term behavior of species. The population
of predator and prey vary with the time. Con-
sidering natural prey deaths, prey deaths due to
predators, predator survival dependence solely
on prey with a natural death rate proportionate
to predator population, the mathematical model
will look like,

dX

dt
= aX − C1XY

dY

dt
= C2XY − bY

where C1, C2 are interaction parameters.
This a classic predator-prey model, which

was independently proposed by Lotka in the
United States in 1925 and Volterra in Italy in
1926. In population dynamics, when the popula-
tion density is very low, there is a positive corre-
lation between the population unit growth rate
and the population density. This phenomenon
can be called the Allee effect. A region is said
to have a strong Allee effect when population
shrinks to lower densities and weak Allee effect
when the proliferation rate is increasing and pos-
itive due to a limited amount of resources. In this
paper we have introduced a predator-prey model
with weak alley effect and the impact of usage of
a pesticide named Carbofuran, on predator-prey
system.

In the above model, we made a assumption
that prey grows exponentially even in absence of
predator, which is unrealistic. Hence, we add a

density-dependent growth with carrying capac-
ity of K. Now with Alley effect and impact of
pesticide in conjunction with density-dependent
growth our model becomes,

dX

dt
= aX

(
X

A
− 1

)(
1− X

K

)
− P1X − C1Y X

dY

dt
= C2XY − P2X − bY

where P1, P2 are per-capita death rates due
to usage of Carbofuran, the pesticide, and A is
the Allee effect constant. When the density is
below the critical threshold, the population af-
fected by the strong Allee effect will have a neg-
ative average growth rate. Under deterministic
dynamics, we find that populations that do not
exceed this threshold will be extinct. Most re-
search only considers the strong Allee effect, but
in the work of Allee it is clear that the Allee effect
also has a weak Allee effect[3, 4, 5]. This research
is mainly about weak Alley effect in combination
with usage of pesticide. The equations are pre-
sented below.

2 Modeling

2.1 Logistic growth predator-prey
model

1) Equations: Let us consider prey population
with density-dependent growth with carrying ca-
pacity of K. The system becomes,

dX

dt
= aX

(
1− X

K

)
− C1Y X (1)
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dY

dt
= C2XY − bY (2)

2) Nullclines: We now find the nullclines at,

dX

dt
=
dY

dt
= 0

For X ′ = 0,
1) X = 0
2) a = aX

K + C1Y

For Y ′ = 0
1)Y = 0 or
2)X = b

C2

3) Equilibrium points: We now find equilib-
rium points for the above 4 nullclines. The equi-
librium solutions are,

(0, 0)

(K, 0)(
b

C2
,
a(KC2 − b)
KC1C2

)

From the above figure, we can conclude that
amplitude of the oscillations decreases with time
for both populations and as the time increases,
the figure suggests that each population settles
to a fixed population density.

2.2 Logistic growth predator-prey
with pesticide model

Now due to rodenticide used to either protect
prey from Predator or kill prey itself, we observe
P1 and P2 per capita deaths in both prey and
predator. The model then becomes,

1) Equations:

dX

dt
= aX

(
1− X

K

)
− C1Y X − P1X (3)

dY

dt
= C2XY − (b+ P2)Y (4)

2) Nullclines: We get nullclines by equating
equations (3) and (4) to 0.

For X ′ = 0,

1)X = 0

2)aXK + C1Y = a− P1

For Y ′ = 0,

1)Y = 0

2)X = b+P2

C2

3) Equilibrium points: The equilibrium points
will be,

(0, 0)(
K

(
1− P1

a

)
, 0

)
(
b+ P2

C2
,
a

C1

(
1− b+ P2

KC2

)
− P1

C1

)

From the above figure, we can conclude that
as the populations oscillates around the equilib-
rium populations and then settles down to these
values. Here particularly, we also see that the
equilibrium population of Rodents is more than
initial population and that of Eagles decreases.
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3 Allee effect

In the density-dependent model, we can see that
population can never exceed the carrying capac-
ity (K) that the environment can hold. Even
though the population density is very low, we
see that there is a exponential growth. This is
the flaw of logistic equation. Warder Clyde Allee
showed that a population can do much worse
when it is very sparse. The reasons include not
being able to find suitable mate, needed more
help to find food. Due to his work, a popula-
tion that has a declining per-capita growth rate
is set to show an Allee effect. The mathematical
representation of this model is,

dX

dt
= aX

(
X

A
− 1

)(
1− X

K

)
(5)

where A is the Allee threshold.

To understand the behavior of this model we find
the equilibrium points of equation (5). The equi-
librium points are,

X = 0

X = K

X = A

So when population is below A, the rate
of change goes negative and it approaches
0. Hence, extinction of a species is possible.
Whereas, if population is above A, the rate if
change is positive and approaches to carrying ca-
pacity K and if its above K, then rate of change
is negative and approaches carrying capacity K.

3.1 Logistic growth predator-prey with Weak Allee effect model

Many eagles were found dead in the fields of Maryland, Montana. According to the authorities
farmers are using pesticides/rodenticides (like Carbofuran) to kill the animals that will come to eat
plants[2], crops and live stock. This in turn kills eagles. In this paper we are introducing a weak
Allee effect on rodents. A population of rodents exhibiting a weak Allee effect will possess a reduced
per-capita growth rate lower population density. However, even at this low population size, the
population of rodents will always exhibit a positive per-capita growth rate.

1) Equations of our model with weak Allee effect:

dX

dt
= aX

(
1− X

K

)(
X

X +A

)
− C1Y X (6)

dY

dt
= C2XY − bY (7)

where X is population of Rodents and Y is the population of Eagles.

2) Nullclines: (Assuming X, Y ≥ 0) We get nullclines by equating equations (6) and (7) to 0.

For X ′ = 0,
1) X = 0
2) aX2 + (C1KY − aK)X + C1KAY = 0
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For Y ′ = 0
1) Y = 0
2) X = b

C2

3) The equilibrium points will be,

(0, 0)

(K, 0)(
b

C2
,

ab(KC2 − b)
C1C2K(b+AC2)

)

Theorem:

1. Trivial equilibrium point E1 is always a saddle node point.

2. E2 is stable for C2 <
b
K and is a saddle point otherwise.

3. Coexistence equilibrium E3 is locally asymptotically stable for A < b2

C2(C2K−2b) and is unstable

node otherwise.

The Jacobian Matrix is,

J =

−C1Y +
Xa(1−X

K )
A+X +X

(
−Xa(1−

X
K )

(A+X)2
+

a(1−X
K )

A+X − Xa
K(A+X)

)
−C1X

C2Y C2X − b


Now, let’s calculate jacobian for each equilibrium point.

1) Jacobian at equilibrium point E1 is given as,(
0 0
0 −b

)
Hence E1 will be a semi-stable or saddle point.

2) Jacobian at equilibrium point E2 is given as,(
− Ka
A+K −C1K

0 C2K − b

)
−Ka
A+K is negative, hence E2 is stable when C2K−b < 0 and is semi-stable or stable when C2K−b > 0.

3) Jacobian at equilibrium point E3 is given as,ab
(
1− b

C2K

)
C2

(
A+ b

C2

) +

b

 a(1− b
C2K )

A+ b
C2

−
ab(1− b

C2K )
C2(A+ b

C2
)
2− ab

C2K(A+ b
C2

)


C2

− ab(C2K−b)
C2K(AC2+b)

−C1b
C2

ab(C2K−b)
C1K(AC2+b)

0



=

(
−2ax∗3+aKx∗2−3aAx∗2+2aAKx∗

K(x∗+A)2 − C1y
∗ −bC1

C2

C2y
∗ 0

)
where x∗ = b

C2
and y∗ = ab(KC2−b)

C1C2K(b+AC2)
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Here trace is −ax
∗(x∗2+2Ax∗−AK)
K(x∗+A)2 and determinant is −bC1y

∗.

Now if Trace < 0 and A < x∗2

(K−2x∗) , then the positive equilibrium is locally asymptotically stable.

Now if Trace > 0 and A > x∗2

(K−2x∗) , then the positive equilibrium is unstable.

From the above figure, we can conclude that both Rodents and Eagles are approaching towards
equilibrium and due to Allee effect the equilibrium population for both Rodents and Eagles is less
than the initial population.

3.2 Predator-Prey model with Weak Allee effect and pesticide

Let us see how our above model changes when both rodents and eagles are infected due to introduc-
tion of rodenticide. As mentioned previously, let P1 and P2 be per capita deaths in both eagles and
rodents because of usage of rodenticide. The model then becomes,

1) Equations of our model with weak Allee effect and rodenticide:

dX

dt
= aX

(
1− X

K

)(
X

X +A

)
− C1Y X − P1X (8)

dY

dt
= C2XY − (b+ P2)Y (9)

2) Nullclines: We get nullclines by equating equations (8) and (9) to 0.

For X ′ = 0,
1)X = 0

2) aX
X+A −

aX2

K(X+A) − C1Y − P1 = 0

For Y ′ = 0
1)Y = 0
2)X = b+P2

C2
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3) The equilibrium points will be,

(0, 0), (α, 0), (β, 0), (X∗, Y ∗)

where,

α =
−P1+a−

√
−4AP1a+P 2

1−2P1a+a2

2a , β =
−P1+a+

√
−4AP1a+P 2

1−2P1a+a2

2a and

X∗ = P2+b
C2

, Y ∗ = (−AP1−P1X
∗−X∗2a+X∗a)

C1(A+X∗)

The Jacobian Matrix is,

J =

−C1Y − P1 +
Xa(1−X

K )
A+X +X

(
−Xa(1−

X
K )

(A+X)2
+

a(1−X
K )

A+X − Xa
K(A+X)

)
−C1X

C2Y C2X − P2 − b


1) Jacobian matrix at equilibrium point E1 is given by,(
−P1 0

0 −P2 − b

)
2) Jacobian matrix at equilibrium point E2 is given by,(
−KP1(A+α)2+aα(A+α)(K−α)−aα(α(K−α)+(A+α)(−K+2α))

K(A+α)2
−C1α

0 C2α− P2 − b

)
3) Jacobian matrix at equilibrium point E3 is given by,(
−KP1(A+β)2+aβ(A+β)(K−β)−aβ(β(K−β)+(A+β)(−K+2β))

K(A+β)2
−C1β

0 C2β − P2 − b

)
4) Jacobian matrix at equilibrium point E4 is given by,(
−K(A+X∗)2(C1Y

∗+P1)+X
∗a(A+X∗)(K−X∗)−X∗a(X∗(K−X∗)+(A+X∗)(−K+2X∗))

K(A+X∗)2
−C1X

∗

C2Y
∗ C2X

∗ − P2 − b

)

4 Numerical Simulation

In this section, we present some numerical simulation to illustrate our theoretical analysis.
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5 Conclusion

The significance of Allee constant A can be clearly seen from the above graphs. Species exhibiting
weak Allee effect, will eventually lead to perishing or a significant decrease in equilibrium population
for Predators. This is clearly in accordance with what happened with Bald Eagles vs Rodents upon
usage of Carbofuran in Washington[1].

From the above research, we can conclude the following points,

1. When the pesticide is added in low amounts,

• low carrying capacity (K) and any Allee constant (A) =⇒ predator extinction and prey
decrease (but not extinct)

• high carrying capacity (K) and low Allee constant (A) =⇒ predator decrease and prey
increase and equilibrium obtained relatively faster

• high carrying capacity (K) and high Allee constant (A) =⇒ predator decrease and prey
increase with coesistence for a longer duration and equilibrium obtained relatively slower
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2. When the pesticide is added in high amounts,

• low carrying capacity (K) and low Allee constant (A) =⇒ predator extinction and prey
decrease (but not extinct)

• any carrying capacity (K) and high Allee constant (A) =⇒ both predator and prey
extinction

• high carrying capacity (K) and low Allee constant (A) =⇒ both predator extinction
and prey increase

6 Future scope

We would like to extend this research further by estimating the best values for the parameters
involved and comment on the results for the model above using a cost function with both least-
squares and cubic-spline techniques and compare their results.
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